Responses of soil microbial activity to cadmium pollution and elevated CO2
نویسندگان
چکیده
To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.
منابع مشابه
Effect of elevated CO2 and drought on soil microbial communities associated with Andropogon gerardii.
Our understanding of the effects of elevated atmospheric CO2, singly and in combination with other environmental changes,on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller than on C3 species, are mediated mostly via decreased stomatal conductance and thus water loss. Therefore, we characterized the interactive effect of elevated CO2 and drought on soil m...
متن کاملInteractive Effects of Salinity and Cadmium Pollution on Enzyme Activity in a Calcareous Soil Treated With Plant Residues
Abiotic stresses such as salinity and contamination individually have a negative effect on the soil enzyme activities, whereas addition of organic matter to soil can alleviate the negative impacts of stresses on the enzyme activity. However, the combined effects of these stresses (multiple stresses) on soil biochemical conditions and the role of organic matter addition in these interactions are...
متن کاملFunctional Response of a Near-Surface Soil Microbial Community to a Simulated Underground CO2 Storage Leak
Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface an...
متن کاملAssessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation
Increased vegetative growth and soil carbon (C) storage under elevated carbon dioxide concentration ([CO2]) has been demonstrated in a number of experiments. However, the ability of ecosystems, either aboveor belowground, to maintain increased C storage relies on the response of soil processes, such as those that control nitrogen (N) mineralization, to climatic change. These soil processes are ...
متن کاملExtracellular Enzyme Activity Beneath Temperate Trees Growing Under Elevated Carbon Dioxide and Ozone
cause these plant tissues are the primary substrates for microbial metabolism in soil. Soil microorganisms are limited by the amount and type of plantOzone is a greenhouse gas that is accumulating in the derived substrates entering soil, and we reasoned that changes in the production and biochemical constituents of plant litter produced lower atmosphere, and elevated O3 has the potential to und...
متن کامل